A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 ℃ as the primary precursor solution of 0.1 M concentration hydrated nickel chloride was dissolved in isopropyl alcohol. Electrical measurements showed that these films were of n-type conductivity while their resistance response to hydrogen flow in air ambient was varied by 2.81% with the rise and recovery time of 48 s and 40 s, respectively.
The silicon-on-insulator diaphragm structure is a combined structure of the silicon dioxide and silicon layer. This work presents a new method to estimate the deflection response of silicon with that of a silicon-on-insulator (SOI) diaphragm structure, based on the burst pressure design approach. It also evaluates the output voltage of the diaphragm under two different conditions, flipped and un-flipped. The new modified analytical model developed and presented in this paper for describing the load deflection of SOI diaphragm is able to predict the deflection accurately when compared with the results obtained by finite element analysis CoventorWare.